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Riddling, bubbling, and Hopf bifurcation in coupled map systems

H. L. Yang and A. S. Pikovsky
Department of Physics, University of Potsdam, Am Neuen Palais, Postfach 601553, D-14415 Potsdam, Germany

~Received 18 May 1999!

In a simple coupled-map system, we show that the desynchronization of the chaotic attractor occurs through
a series of Hopf bifurcations. As a result of the accumulation of these processes, the blowout bifurcation of this
coupled map system is anew kind of Hopf bifurcation from a chaotic attractor. Riddling, bubbling, and
characters of this particular manifestation of Hopf bifurcation from a chaotic attractor are studied in this paper.
@S1063-651X~99!14811-6#

PACS number~s!: 05.45.2a
ca

yn
si

tio

at
th
ic
s
ch

a-
er
h
pr

ro
fu

i
ld
-

ai
ill
of
s
om
xp
er

In
b

t-
a

st
ill
on
ai

tio

is
tate
the
rily
ue
tor.
nd

e
is

gi-
n
m.
ha-
s of
tial

ac-

aps

ap
er

ed
Recently, the phenomenon of synchronization of identi
chaotic systems coupled in an array has become a very
tensely studied subject@1–7#. An important question in this
field concerns the form of the basin of attraction of the s
chronized state and the bifurcations through which this ba
or the attractor itself, undergoes qualitative changes@2–6,8–
10#. Interesting phenomena as riddled basins of attrac
@2,4–6,8,10# and on-off intermittency@3,9# have been ob-
served during the destabilization of the synchronous st
Occurrence of the riddled basin of attraction is due to
so-called riddling bifurcation in which an unstable period
orbit embedded in the synchronous chaotic attractor lose
transverse stability. Different kinds of local bifurcations su
as subcritical the pitchfork bifurcation@10#, the period-
doubling bifurcation and the supercritical pitchfork bifurc
tion @5# can be candidates of this riddling bifurcation. Aft
the riddling bifurcation, a set of tongues opens from t
transversely unstable periodic circle and its dense set of
images in the synchronous chaotic state@10#. Phase points
falling in these tongues will be repelled from the synch
nous state on the main diagonal. In case the riddling bi
cation is supercritical, the transversely destabilized orbit w
be surrounded by saddle points with unstable manifo
along the invariant subspace@5#. In this case, the orbits wan
der around in the phase space after they are repelled from
main diagonal. Sooner or later they will be reinjected ag
into the proximity of the main diagonal. Some of them w
be mapped again into these tongues after some steps
erations, and hence, again leave the neighborhood of the
chronous state. This gives rise to the intermittent burst fr
the invariant subspace. Since the transverse Lyapunov e
nents are all negative, the burst will tend to stop. This int
mittent burst is called attractor bubbling@4# and the basin of
attraction of this attractor is referred to as local riddling.
this case, the motion of the phase points is restricted
nonlinear mechanism within a region of phase space~the
absorbing area! @11# that lies strictly inside the basin of a
traction of the synchronous state. With variation of the p
rameter, the absorbing area of the synchronous chaotic
will grow and/or the basin of attraction of this state w
shrink. The boundary of the absorbing area will make c
tact with the boundary of the basin of attraction at a cert
moment. After this boundary crisis@11#, the orbits falling in
the tongues will eventually escape to the basin of attrac
PRE 601063-651X/99/60~5!/5474~5!/$15.00
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of another attractor or infinity. In case the boundary crisis
before the blowout bifurcation, the synchronous chaotic s
attracts a set of points of positive Lebegue measure in
neighborhood of the invariant subspace. However, arbitra
close to any such point one may find a positive Lebeg
measure of points that are repelled by the chaotic attrac
This attractor is referred as a weaker Milnor attractor. A
its basin of attraction is globally riddled.

In this paper, a ring of logistic maps with both diffusiv
and gradient coupling is studied. Such a ring structure
frequently used in the study of biochemical and physiolo
cal problems@12#. It is shown that the Hopf bifurcation ca
be a new candidate of riddling bifurcation in such a syste
Unstable periodic orbits embedded in the synchronous c
otic state lose their transverse stabilities through a serie
Hopf bifurcations. Due to the accumulation of these par
destabilizations, the blowout bifurcation@9# exhibits to be a
Hopf bifurcationfrom a chaotic attractor@7#. This particular
manifestation of the Hopf bifurcation has some new char
ter in contrast to the traditional casefrom a fixed point or
periodic orbit.

Let us consider the system of three coupled logistic m
in the form:

xn115 f ~xn!1~e1r !g~yn ,xn!1~e2r !g~zn ,xn!, ~1!

yn115 f ~yn!1~e1r !g~zn ,yn!1~e2r !g~xn ,yn!, ~2!

zn115 f ~zn!1~e1r !g~xn ,zn!1~e2r !g~yn ,zn!, ~3!

where the local dynamics is of the form of the logistic m
f (x)5ax(12x) and a represents the controlling paramet
of the single map,e and r are the coefficients of diffusive
and gradient coupling respectively,g(x,y) is the coupling
function satisfying the conditiong(x,x)50. With a suitable
setting of the coupling coefficientse andr, the three logistic
maps can be synchronized. In this case, the system~1! pos-
sess an attractor in the symmetry subspacexn5yn5zn
[sn .

To determine the transverse stability of the synchroniz
state, one should letxn5sn1dxn ,yn5sn1dyn ,zn5sn
1dzn and linearize the system~1! about the synchronized
statexn5yn5zn[sn . This leads to
5474 © 1999 The American Physical Society
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Dn115MnDn , ~4!

whereDn5(dxn ,dyn ,dzn) and the transform matrixMn is
of the form:

Mn5S f 8~sn!22eg8 ~e1r !g8 ~e2r !g8

~e2r !g8 f 8~sn!22eg8 ~e1r !g8

~e1r !g8 ~e2r !g8 f 8~sn!22eg8

D
~5!

where f 8[d f(x)/dx and g8[]/]xg(x,y). This matrix has
three eigenvalues. The first one iss15 f 8(sn). The corre-
sponding eigenvector is (1,1,1) along the main diagona
characterizes the dynamics of the synchronized state a
the main diagonal. The two other ones ares2,35 f 8(sn)
23eg86 iA3rg8 which characterize the transverse dyna
ics of the synchronized state. For anN-periodic synchronous
state gN5$x1 ,x2 , . . . ,xN%, the criterion for its transverse
stability is

)
n51

N

u@ f 8~xn!23eg8#213r 2g82u,1. ~6!

It should be noted that the two eigenvalues for the transv
dynamics are of complex values. Hence destructions of
transverse stability of the periodic cycles are through H
bifurcations. The riddling bifurcation is of a new local dy
namics in contrast to the former reported cases@5,6,10#. As a
result of the accumulation of this desynchronization of
periodic cycles, the synchronous chaotic statexn5yn5zn
becomes transversely unstable when the largest transv
Lyapunov exponentL' changes its sign. This is called th
blowout bifurcation@9#. Here we have two identical trans
verse Lyapunov exponents for the synchronous chaotic s

L' (1,2)5 lim
N→`

1

N
lnus̃N

(1,2)u, ~7!

where s̃N
(1,2)5)n51

N @ f 8(xn)23eg86 iA3rg8# are the two

complex eigenvalues of the matrixM̃N5)n51
N Mn ,xn is a

typical orbit which leads to the chaotic attractor. And t
blowout bifurcation in this case is corresponding to t
crossing of the pair of complex eigenvaluess̃N

(1,2) through
the unit circle. So, we would like to say that here the blowo
bifurcation is a Hopf bifurcation from a chaotic attracto
Throughout the rest of this paper we will use a specific fo
of coupling functiong(x)5x to show numerically what hap
pens during the gradual destruction of the synchronous
otic state.

By determining the transverse stability of the main lo
period cycles embedded in the synchronous chaotic attra
@13#, a diagram of the stability region in the parameter sp
(e,r ) is plotted in Fig. 1. In regionA, all the periodic circles
are transversely stable. Hence the synchronous state is a
lutely stable in this case. In regionB, some of the low period
circles are transversely unstable while the transve
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Lyapunov exponents are all negative. The synchronous c
otic attractor is stable on the average and attracts a se
points of positive Lebegue measure from its neighborho
In this case, it may be referred to as a Milnor attractor@14#.
The curve dividing regions A and B corresponds to the r
dling bifurcation. For the parameter setting used, the bou
ary crisis @9#, where the absorbing area of the synchrono
state collides with the basin boundary of this state, occ
after the blowout bifurcation. So, only local riddling~or say
attractor bubbling! can be observed in regionB. With a small
amplitude noise or parameter mismatch, the system exh
intermittent bursts from the invariant subspace. An exam
of the basin structure of the synchronous statexn5yn5zn
for e520.84 andr 50.14 is shown in Fig. 2~a!. With further
increase of the gradient couplingr, the maximum transverse
Lyapunov exponent will change its sign from negative
positive. The curve dividing the regions B and C is corr
sponding to the zero value of the maximum transve
Lyapunov exponent. In region C, the synchronous state
the main diagonalxn5yn5zn becomes transversely un
stable. After the breakdown of the one-dimensional synch
nous state, a new three-dimensional attractor appears.
basin of attraction of this new attractor is shown in Fig. 2~b!.
It can be seen that, immediately after the blowout bifurc
tion, the basin of attraction remains practically unaffected
the change in the attractor. The motion of a typical orbit
the new attractor is the combination of the four-band chao
motion along the main diagonal@see Fig. 2~c!# and the cir-
cling motion around the main diagonal in the transverse
rection @Fig. 2~d!#. The former is the continuation of th
chaotic motion on the main diagonal for the synchrono
case.

To study the transverse motion of the system~1! just be-
yond the blowout bifurcation, we first see the evolution
the variabledn[A(yn2xn)21(zn2yn)21(xn2zn)2 which
has the meaning of the instantaneous distance of the p
point (xn ,yn ,zn) from the main diagonalxn5yn5zn . Nu-

FIG. 1. The stability diagram of the system~1! in the phase
plane (e,r ) anda53.58.
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FIG. 2. ~a! The basin of attraction of the synchronous statexn5yn5zn in the plane (xn ,yn). Here the initial value ofzn is set to (xn

1yn)/2; the parameter setting for~a! is a53.58, e520.84 andr 50.14; ~b! attracting basin of the 3-dimensional attractor beyond

blowout bifurcation;~c! s̄n[(xn1yn1zn)/3 versn; ~d! projection of the 3-dimensional attractor on the plane (yn2xn ,zn2yn); ~e! temporal

evolution of the distancedn ; ~f! variation of the mean distanced̄ with that ofr; ~g! the power spectrum of the variableyn2xn ; the parameter
setting for ~b!–~g! is a53.58, e520.84 andr 50.1441. Here the critical value of the parameterr for the blowout bifurcation isr c

50.144.
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merical results of the variation ofdn with the timen is shown
in Fig. 2~e!. The long time near zero phase is interrupt
irregularly and continuously by the short time large amp
tude burst events. This is the typical character of the on
intermittency @3#. Also, variation of the mean distanced̄
[ limN→`1/N(n51

N dn with that of the parameter settingr is
calculated@Fig. 2~f!#. Here we keep the parametera53.58
ande520.84. It can be seen that beyond the blowout bif
cation, the mean distanced̄ increases as the power law of th
parameter deviation:d̄}(r 2r c)

g where g'0.5 and r c
'0.144 for the used parameter setting. This is different fr
other cases of on-off intermittency@3#, where the exponentg
has a different valueg'1.0. Also, the power spectrum of th
variable yn2xn is calculated@see Fig. 2~g!#. At least two
independent frequencies can be seen from the plot. They
f 150.25 and f 250.1375 respectively. Comparing it wit
that of the variablexn , we know that the first onef 150.25 is
from the four band chaotic motion ofxn . The other one is
newly appearing after the blowout bifurcation. We ha
known that the occurrence of this blowout bifurcation resu
from the accumulation of Hopf bifurcations of unstable p
riodic circles embedded in the chaotic attractor. After t

FIG. 3. ~a! Local riddled basin for the case ofa53.65,
r 50.05 ande520.81; ~b! global riddled basin for the case o
e520.65.
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Hopf bifurcation of each periodic circle, a new frequen
will appear. So, the new frequencyf 2 should correspond to
that resulting from the Hopf bifurcation of a certain period
circle. And, it is also expected that, in general, there sho
be more than one new frequencies appearing after the b
out bifurcation. For the parameter setting used, the frequ
cies corresponding to the main low order periodic orbits a
f p4

50.1330,f p8
50.1381 andf p16

50.1370. They are almos
of the same value. This may be the reason why we obse
only one new frequency in the power spectrum of the va
ableyn2xn .

Also, for other parameter settings, we can have the c
that the boundary crisis, where the boundary of the absorb
area of the synchronous chaotic state collides with the b
boundary of this state, occurs before the blowout bifurcati
There, a bifurcation from the locally riddled basin to th
globally riddled basin can be observed. One example of s
a bifurcation for the parameter settinga53.65 andr 50.05
is shown in Fig. 3. In Fig. 3~a!, the basin of attraction of the
synchronous state has a fractal boundary. But there are
tongues in this basin of attraction belonging to that of a
other attractor. Orbits repelled from the main diagonal c
never reach the basin boundary. This kind of basin of attr
tion is referred to as local riddling. In Fig. 3~b!, for any point
in the basin of attraction of the synchronous chaotic state
an arbitrarily small region about this point, there is a set
finite measure which belongs to the basin of attraction
another attractor. The basin of attraction of the synchron
state is globally riddled.

In summary, the main results of this paper are as follo
First, comparing to the case reported formerly, the Hopf
furcation as a new candidate of the local dynamics of
riddling bifurcation can also cause the destruction of
transverse stability of the periodic circles embedded in
synchronous chaotic state. Second, the blowout bifurca
in the studied system is a particular case of a Hopf bifur
tion from a chaotic attractor. In contrast to the normal case
a Hopf bifurcation from a fixed point or limited circle, it ha
two new features:~1! The radius of the circle motion in the
transverse direction shows extreme intermittent behavior
its mean value increases as the square root of the param
deviation;~2! Some new frequencies appear after the blo
out bifurcation. They result from the Hopf bifurcation of th
periodic circles embedded in the synchronous chaotic st
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