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Riddling, bubbling, and Hopf bifurcation in coupled map systems
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In a simple coupled-map system, we show that the desynchronization of the chaotic attractor occurs through
a series of Hopf bifurcations. As a result of the accumulation of these processes, the blowout bifurcation of this
coupled map system is mew kind of Hopf bifurcationfrom a chaotic attractor Riddling, bubbling, and
characters of this particular manifestation of Hopf bifurcation from a chaotic attractor are studied in this paper.
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PACS numbdps): 05.45-a

Recently, the phenomenon of synchronization of identicabf another attractor or infinity. In case the boundary crisis is
chaotic systems coupled in an array has become a very ifefore the blowout bifurcation, the synchronous chaotic state
tensely studied subje¢l—7]. An important question in this attracts a set of points of positive Lebegue measure in the
field concerns the form of the basin of attraction of the syn-neighborhood of the invariant subspace. However, arbitrarily
chronized state and the bifurcations through which this basirglose to any such point one may find a positive Lebegue
or the attractor itself, undergoes qualitative charf@ess,8—  measure of points that are repelled by the chaotic attractor.
10]. Interesting phenomena as riddled basins of attractior] Nis attractor is referred as a weaker Milnor attractor. And
[2,4-6,8,10 and on-off intermittency[3,9] have been ob- its basin of attraction is globally riddled.
served during the destabilization of the synchronous state. [N this paper, a ring of logistic maps with both diffusive
Occurrence of the riddled basin of attraction is due to theand gradient coupling is studied. Such a ring structure is
so-called riddling bifurcation in which an unstable periodic frequently used in the study of biochemical and physiologi-
orbit embedded in the synchronous chaotic attractor loses i@l problemg12]. It is shown that the Hopf bifurcation can
transverse stability. Different kinds of local bifurcations suchb€ @ new candidate of riddling bifurcation in such a system.
as subcritical the pitchfork bifurcatiofil0], the period- Unstable periodic orbits embedded in the synchronous cha-
doubling bifurcation and the supercritical pitchfork bifurca- Otic state lose their transverse stabilities through a series of
tion [5] can be candidates of this riddling bifurcation. After Hopf bifurcations. Due to the accumulation of these partial
the ndd“ng bifurcation’ a set of tongues opens from thedestab-ilizatio-ns, the blOWOUt. b|furcat|¢9] eXh|b|tS tO be a
transversely unstable periodic circle and its dense set of prdd0pf bifurcationfrom a chaotic attractof7]. This particular
images in the synchronous chaotic stgté]. Phase points manifestation of the Hopf bifurcation has some new charac-
falling in these tongues will be repelled from the synchro-ter in contrast to the traditional casem a fixed point or
nous state on the main diagonal. In case the riddling bifurieriodic orbit o
cation is supercritical, the transversely destabilized orbit will ~Let us consider the system of three coupled logistic maps
be surrounded by saddle points with unstable manifolddn the form:
along the invariant subspag®|. In this case, the orbits wan-
der around in the phase space after they are repelled from the ~ Xp+1="f(Xp) +(€+1)g(yn.Xy) +(€=1)9(Zy.,%p), (1)
main diagonal. Sooner or later they will be reinjected again
into the proximity of the main diagonal. Some of them will v —f(y )+ (e+r)g(z,,yn)+(e—=1)g(Xy,Yn), (2)
be mapped again into these tongues after some steps of it-
erations, and hence, again leave the neighborhood of the syn-
chronous state. This gives rise to the intermittent burst from  Zn+1=(Zn) +(e+1)9(X,20) +(€=1)Q(Yn.2Z0),  (3)
the invariant subspace. Since the transverse Lyapunov expo-
nents are all negative, the burst will tend to stop. This interwhere the local dynamics is of the form of the logistic map
mittent burst is called attractor bubblifig] and the basin of f(x)=ax(1—x) anda represents the controlling parameter
attraction of this attractor is referred to as local riddling. Inof the single mape andr are the coefficients of diffusive
this case, the motion of the phase points is restricted bynd gradient coupling respectivelg(x,y) is the coupling
nonlinear mechanism within a region of phase spébe  function satisfying the conditiog(x,x)=0. With a suitable
absorbing area[11] that lies strictly inside the basin of at- setting of the coupling coefficientsandr, the three logistic
traction of the synchronous state. With variation of the pa4maps can be synchronized. In this case, the sy$igmos-
rameter, the absorbing area of the synchronous chaotic stasess an attractor in the symmetry subspagey,=z,
will grow and/or the basin of attraction of this state will =s;.
shrink. The boundary of the absorbing area will make con- To determine the transverse stability of the synchronized
tact with the boundary of the basin of attraction at a certairstate, one should letx,=s,+ 6X,,Yn=Sn+ 0Yn,Z,=S;
moment. After this boundary cris[41], the orbits falling in  + 6z, and linearize the systerfl) about the synchronized
the tongues will eventually escape to the basin of attractiostatex,=y,=z,=s,,. This leads to
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Apy1=MuA,, (4) 0.20 ' ' ' '
whereA,,=(6%,,d0Y,,0z,) and the transform matriiM , is
of the form:
0.15 | |
f'(sn)—2€9’  (e+r)g’ (e=1)g’
M= (e=r)g"  f'(s))—2eg"  (e+r)g’
— 010 8
(e+1)g’ (e=1)g"  f'(sy)—2eg’
©)
where f'=df(x)/dx and g’ =4d/dxg(x,y). This matrix has 0.05 - i
three eigenvalues. The first onedg="f'(s,). The corre-
sponding eigenvector is (1,1,1) along the main diagonal. It
characterizes the dynamics of the synchronized state alon
the main diagonal. The two other ones arg;=1'(s,) 0.00 , , , ,
—3€g’ti\/§rg’ which characterize the transverse dynam- 10 -0.9 -0.8 -0.7 -0.6 -0.5
ics of the synchronized state. For Brperiodic synchronous €
state yn={X1,X5, ... Xy}, the criterion for its transverse
stability is FIG. 1. The stability diagram of the syste(t) in the phase

plane (,r) anda=3.58.

N
I1 [[F'(xn) —3eg’]*+3r?g’? <1. (6) .
n=1 Lyapunov exponents are all negative. The synchronous cha-

otic attractor is stable on the average and attracts a set of

It should be noted that the two eigenvalues for the transverseoints of positive Lebegue measure from its neighborhood.
dynamics are of complex values. Hence destructions of thé this case, it may be referred to as a Milnor attra¢iot].
transverse stability of the periodic cycles are through Hopfl he curve dividing regions A and B corresponds to the rid-
bifurcations. The riddling bifurcation is of a new local dy- dling bifurcation. For the parameter setting used, the bound-
namics in contrast to the former reported cd$c6,10. Asa &y crisis[9], where the absorbing area of the synchronous
result of the accumulation of this desynchronization of theState collides with the basin boundary of this state, occurs
periodic cycles, the synchronous chaotic statey,=z, after the blowqut bifurcation. So, o_nIy Io_cal ndghdgr say
becomes transversely unstable when the largest transverdfractor bubblingcan be observed in regidh With a small
Lyapunov exponent\, changes its sign. This is called the amplitude noise or parameter mismatch, the system exhibits
blowout bifurcation[9]. Here we have two identical trans- ntermittent bursts from the invariant subspace. An example

verse Lyapunov exponents for the synchronous chaotic stat@f the basin structure of the synchronous stee-y, =z,
for e= —0.84 andr =0.14 is shown in Fig. @&). With further

1 increase of the gradient couplimgthe maximum transverse
AL@D= |im —|”|?T(Nl’2)|- 7) Lyapunov exponent will change its sign from negative to
NN positive. The curve dividing the regions B and C is corre-
sponding to the zero value of the maximum transverse
where o{("*P=TIN_,[f'(x,)—3eg’ +i\3rg’] are the two Lyapunov exponent. I_n re_gion C, the synchronous state on
) ~ N ) the main diagonalx,=y,=z, becomes transversely un-
complex eigenvalues of the matrMy=1II,_;Mn.Xy is @  gtaple. After the breakdown of the one-dimensional synchro-
typical orbit which leads to the chaotic attractor. And thepgys state, a new three-dimensional attractor appears. The
blowout bifurcation in this case is corresponding to thepasin of attraction of this new attractor is shown in Fith)2
crossing of the pair of complex eigenvalue&’z) through It can be seen that, immediately after the blowout bifurca-
the unit circle. So, we would like to say that here the blowouttion, the basin of attraction remains practically unaffected by
bifurcation is a Hopf bifurcation from a chaotic attractor. the change in the attractor. The motion of a typical orbit on
Throughout the rest of this paper we will use a specific formthe new attractor is the combination of the four-band chaotic
of coupling functiong(x) = x to show numerically what hap- motion along the main diagong$ee Fig. 2c)] and the cir-
pens during the gradual destruction of the synchronous chaling motion around the main diagonal in the transverse di-
otic state. rection [Fig. 2(d)]. The former is the continuation of the
By determining the transverse stability of the main low- chaotic motion on the main diagonal for the synchronous
period cycles embedded in the synchronous chaotic attract@ase.
[13], a diagram of the stability region in the parameter space To study the transverse motion of the systéthjust be-
(e,r) is plotted in Fig. 1. In regioi, all the periodic circles yond the blowout bifurcation, we first see the evolution of
are transversely stable. Hence the synchronous state is abshe variabled,=\(y,—Xn) >+ (zn— Yn) >+ (X, — 2,)? Which
lutely stable in this case. In regid®) some of the low period has the meaning of the instantaneous distance of the phase
circles are transversely unstable while the transverseoint (x,,Y,,z,) from the main diagonak,=y,=z,. Nu-
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FIG. 2. (a) The basin of attraction of the synchronous statey,=z, in the plane X, ,y,). Here the initial value of, is set to §,
+y,)/2; the parameter setting f@g) is a=3.58, e=—0.84 andr=0.14; (b) attracting basin of the 3-dimensional attractor beyond the
blowout bifurcation;(c)?ns(xn+yn+zn)/3 versn; (d) projection of the 3-dimensional attractor on the plapg{x,,z,—Y,); (€) temporal
evolution of the distancd,, ; (f) variation of the mean distancewith that ofr; (g) the power spectrum of the variabtg—x,, ; the parameter

setting for (b)—(g) is a=3.58, e=—0.84 andr=0.1441. Here the critical value of the parametefor the blowout bifurcation is
=0.144.
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1.2 — Hopf bifurcation of each periodic circle, a new frequency
09 ] will appear. So, the new frequendy should correspond to
006 | ] that resulting from the Hopf bifurcation of a certain periodic
>0 circle. And, it is also expected that, in general, there should
03 ] be more than one new frequencies appearing after the blow-
Ko < SuE - out bifurcation. For the parameter setting used, the frequen-
0.00306091.2 cies corresponding to the main low order periodic orbits are:
(a) fp,=0.1330,f, =0.1381 and', =0.1370. They are almost
- . . . of the same value. This may be the reason why we observe

only one new frequency in the power spectrum of the vari-
abley,—x,.

09 Also, for other parameter settings, we can have the case
>-20.6 i that the boundary crisis, where the boundary of the absorbing
area of the synchronous chaotic state collides with the basin
0.3 1 boundary of this state, occurs before the blowout bifurcation.
There, a bifurcation from the locally riddled basin to the
0-00 0 03 06 09 12 globally riddled basin can be observed. One example of such
(b) Xo a bifurcation for the parameter settilag=3.65 andr =0.05

is shown in Fig. 3. In Fig. &), the basin of attraction of the
synchronous state has a fractal boundary. But there are no
tongues in this basin of attraction belonging to that of an-
other attractor. Orbits repelled from the main diagonal can
never reach the basin boundary. This kind of basin of attrac-
tion is referred to as local riddling. In Fig(l3, for any point

in the basin of attraction of the synchronous chaotic state, in
an arbitrarily small region about this point, there is a set of

. lar] q . v by the sh ) | ! finite measure which belongs to the basin of attraction of
Irregularly and continuously by the short time large ampli- 5 qher attractor. The basin of attraction of the synchronous
tude burst events. This is the typical character of the on-of

- tate is globally riddled.
intermittency [3]. Also, variation of the mean distana In summary, the main results of this paper are as follows.
=limy_,1/NZ)_,d, with that of the parameter settingis  First, comparing to the case reported formerly, the Hopf bi-
calculated[Fig. 2(f)]. Here we keep the parameter-3.58 furcation as a new candidate of the local dynamics of the
ande=—0.84. It can be seen that beyond the blowout bifur-riddling bifurcation can also cause the destruction of the
cation, the mean distanceincreases as the power law of the transverse stability of the periodic circles embedded in the
parameter deviationde(r—r.)” where y~0.5 and r, synchronous chaotic state. Second, the blowout bifurcation

~0.144 for the used parameter setting. This is different fronj" the studied system is a particular case of a Hopf bifurca-
other cases of on-off intermitten¢g], where the exponent tion from.a cha_otlc attractor. In contrast to 'ghe nqrmal case of
has a different valug~1.0. Also, the power spectrum of the & HOPf bifurcation from a fixed point or limited circle, it has
variable y,,—x, is calculated[see Fig. 2g)]. At least two two new fea;ures.(l) The radius of the C|rcl'e motion |n'the
independent frequencies can be seen from the plot. They a%ansverse dlreqtlon shows extreme intermittent behavior and
f,=0.25 andf,=0.1375 respectively. Comparing it with its mean value increases as the square root of the parameter
that of the variable,, , we know that the first ong;=0.25 is deV|a_t|on;(2_) Some new frequencies appear after_ the blow-
from the four band chaotic motion of,. The other one is °”t.b'f9fc‘”?‘“°”- They result from the Hopf blfurcatlonlof the
newly appearing after the blowout nbifurcation. We haveper'Od'C circles embedded in the synchronous chaotic state.

known that the occurrence of this blowout bifurcation results H.L. Yang acknowledges support from the Alexander von
from the accumulation of Hopf bifurcations of unstable pe-Humboldt Foundation. The authors thank Sven Titz for a
riodic circles embedded in the chaotic attractor. After thecritical reading of the manuscript.

FIG. 3. (a8 Local riddled basin for the case oi=3.65,
r=0.05 ande=—0.81; (b) global riddled basin for the case of
e=—0.65.

merical results of the variation of, with the timen is shown
in Fig. 2(e). The long time near zero phase is interrupted
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